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A UNIFORMLY CONVERGENT METHOD FOR A SINGULARLY 
PERTURBED SEMILINEAR REACTION-DIFFUSION PROBLEM 

WITH MULTIPLE SOLUTIONS 

GUANGFU SUN AND MARTIN STYNES 

ABSTRACT. This paper considers a simple central difference scheme for a singu- 
larly perturbed semilinear reaction-diffusion problem, which may have multi- 
ple solutions. Asymptotic properties of solutions to this problem are discussed 
and analyzed. To compute accurate approximations to these solutions, we 
consider a piecewise equidistant mesh of Shishkin type, which contains O(N) 
points. On such a mesh, we prove existence of a solution to the discretization 
and show that it is accurate of order N-2 ln2 N, in the discrete maximum 
norm, where the constant factor in this error estimate is independent of the 
perturbation parameter E and N. Numerical results are presented that verify 
this rate of convergence. 

1. INTRODUCTION 

Singularly perturbed nonlinear boundary value problems occur frequently in en- 
gineering applications such as catalytic reactions or absorption processes and fluid 
dynamics; see Smith [16, Chapter 10]. 

We consider the semilinear problem 

(1.la) Feu(x)= -62u"(X) ? b(x, u) =0 for x E (0, 1), 

(li.b) u(0) = u(1) = 0, 

where E is a small positive parameter. Set X = [0, 1]. We shall assume that 
b E C'(X x I1) for convenience. 

Asymptotic and numerical solutions of problem (1.1) have been considered by 
many authors, under various hypotheses on b(x, u). See for example Chang and 
Howes [1], D'Annunzio [2], Fife [4], Herceg [7], Herceg and Petrovic [8] and Lorenz 

[9]. 
One of the conditions occurring frequently in the literature is 

(1.2) bu(x,u) > b > 0 for all (xu) E X x 11. 

Under this condition, problem (1.1) has a unique solution u E C??(X); see Lorenz 
[9]. 

The reduced problem of (1.1) is defined by 

(1.3) b(x, uo) = 0 for x E X. 
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Under condition (1.2), this reduced problem has a unique solution u0 E C??(X), as 
can be seen using the implicit function theorem and the compactness of X. Note 
that in general, uo does not satisfy either of the boundary conditions in (1.ib). 

The reduced problem (1.3) may have more than one solution if condition (1.2) 
is not satisfied. Fife [4], D'Annunzio [2] and O'Malley [11] consider problem (1.1) 
under the assumptions that: 

(i) it has a stable reduced solution, i.e., there exists a solution uo E C?(X) of 
(1.3) such that 

(1.4a) bu(x,uo) > b2 > 0 for all x E X; 

(ii) it has stable boundary layers, i.e., the stable reduced solution u0 of (i) satisfies 

Ad ( r E (uo(0),0], whenever 0 > uo(0), (1.4b) 
J bOsd > 0 for 

bu(o, s)ds 
> 

T 7 E [Ouo(0)), whenever uo(0) > 0, (1.4c) 
and 

t b(1, srds > O f T E (uo(1), 0], whenever 0 > uo(1), (1.4d) 

b(1, stds 
> 0 for 

T E [0,uo(1)), whenever uo(1) > 0. (1.4e) 

The conditions (1.4) are obviously weaker than condition (1.2). Condition (1.4a) 
implies that any solution of (1.3) is locally unique. Problem (1.1) under the con- 
ditions (1.4) may exhibit multiple solutions. D'Annunzio [2] uses degree theory to 
prove existence and local uniqueness of a solution satisfying (1.1) and (1.4). 

In what follows, we shall refer to (1.1) under condition (1.2) as problem (A) and 
(1.1) under conditions (1.4) as problem (B). 

A solution u(x) of (1.1) usually exhibits sharp boundary layers at the endpoints 
of the interval X when the parameter E is near zero. When polynomial-based 
numerical methods are applied to (1.1), one does not obtain accurate results on all 
of X, even in the linear case. This has led to the development of numerical methods 
that are uniformly convergent with respect to the perturbation parameter. 

Let u be a solution of (1.1). Consider a difference scheme for solving (1.1). 
Suppose that this scheme has a solution u N that satisfies 

(1.5) HU - uNi11 < Cg(N), 

where N, independent of a, is the number of subintervals in the mesh used, C is 
a positive constant independent of N and a, and g(N) is a function of N but is 
independent of E. If g(N) -+ 0 as N -+ oc, then we say that the scheme is uniformly 
convergent to u, with respect to the norm 11 11. Furthermore, we shall say that the 
scheme is uniformly convergent with order g(N) in the norm 11 1 II. In this paper, 
we consider only uniform convergence with respect to the discrete L' norm. 

In the linear case, many authors consider both uniformly convergent exponen- 
tially fitted schemes on equidistant meshes and uniformly convergent polynomial- 
based schemes on special meshes; see Doolan et al. [3], Hegarty et al. [6], Niijima 
[10], O'Riordan and Stynes [12], Roos [14] and Vulanovic [18]. 

Uniformly convergent methods for the semilinear problem (A) have also been ex- 
amined. Vulanovic [17] applies a central difference scheme to the semilinear problem 
(A). He obtains second-order uniform convergence of the scheme on a special graded 
mesh of Bakhvalov type. Herceg [7] investigates a scheme for problem (A) under 
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extra somewhat restrictive conditions on the problem. He achieves fourth-order 
uniform convergence of the scheme, again on a graded mesh of Bakhvalov type. 

D'Annunzio [2] uses a simple central difference scheme on a special locally 
quasi-equidistant mesh to solve the more general problem (B). This mesh contains 
o (h-1 ln i/E) mesh points when E < h, where h is the maximum mesh spacing 
over the interval X. She shows existence of a solution to the discrete problem and 
0(h) convergence of this solution to a solution of problem (B). The constant factor 
in the error estimate is independent of E. The method is not however uniformly 
convergent in the sense of (1.5), since the number of mesh points depends on the 
perturbation parameter E. 

In the present paper, we consider a uniformly convergent method for problem 
(B). This method is D'Annunzio's scheme on a special piecewise equidistant mesh. 
Such meshes, which were recently introduced by Shishkin [15], are much simpler 
than the graded meshes of Vulanovic [17], Herceg [7] and D'Annunzio [2]. We use 
degree theory to prove existence of a solution to the scheme. We construct super 
and sub solutions that are within o(E 2 2 (1/E)) of a solution of problem (B); -we 
also consider their discrete analogues for the scheme. Then we deduce uniform con- 
vergence of 0 (N-2 In2 N) for the scheme under the nonrestrictive assumption that 
E < N-1. This result is a significant improvement over the first-order convergence 
obtained by D'Annunzio [2] for the same scheme on a different mesh. 

A summary of the paper is as follows. Section 2 contains results concerning the 
exact solutions of problem (B). In ?3, we bound truncation errors of the central 
difference scheme on a piecewise equidistant Shishkin mesh. In ?4, we prove exis- 
tence of solutions and the almost second-order uniform accuracy of the scheme for 
problem (B). Section 5 presents numerical computations that confirm our results. 

Notation. Throughout this paper we let C, sometimes subscripted, denote a 
generic positive constant that may take different values in different formulas, but 
is always independent of N and E. 

2. THE CONTINUOUS PROBLEM 

In this section, we discuss the properties of exact solutions of problem (B). We 
shall suppose, without loss of generality, that u0(0) < 0 and uo(l) < 0, as other 
cases can be handled similarly. 

The concepts of super and sub solutions are important for the study of problem 
(B). Suppose that there exist two functions al and 3 E C2(X) with the following 
properties: 

Fea(x) < 0 < FO3(x) for x E Xi 
ca(O) < 0 < ?(0), 

ca(l) < 0 < (1), 

Ol(x) < (x) for x E X. 

Then 3(x) and ac(x) are said to be super and sub solutions respectively of problem 
(B). 

In order to prove higher-order convergence of a central difference scheme for 
problem (B), we shall introduce super and sub solutions that are more accurate 
than those in D'Annunzio [2]. Let us first give some notation and definitions. 
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We use a cutoff function u(x) defined by 

9(X) 1 for 0 < x < 1/4, 
5 l0 for 1/2 < x < 1, 

where a E C??(X) and a is monotonically decreasing. 
Let v c C' (0, oc). Let J denote a positive integer. Let b, be a positive constant. 

If for each 6 E (0, b1) there exists a positive constant C6, depending on 6 and J, 
such that 

v(j)(71) < C6exp(-(bi - 6>), 

for 71 > 0 and j = 0, 1, ., J, then we say that the function v(71) belongs to the 
class e(bi,J). 

In the rest of this section, we shall use J to denote an arbitrary positive integer. 
In fact, we shall take J = 4 in the analysis of ??3 and 4. 

The following two lemmas are modifications of Lemmas 2.1 and 2.2 of Fife [4], 

Lemma 2.1. LetA > 0 be a constant. Letg E C??[0,oo) satisfy g(0) = g. 9'(0) > 0 
and 

jg(s) > 0 for T E (0, A]. 

Then for 71 > 0, there exists a unique strictly decreasing solution v(r) of 

(2.1) v"/-g(v) = 0 for 71 > ?, 

(2.2) v(0) = A, v(oo) = 0. 

Furthermore, v belongs to the class e(bi, J) with b = g(0). 

Proof. By Lemma 2.1 of Fife [4], the solution v of (2.1) and (2.2) exists, is strictly 
decreasing and satisfies 

Cb1 exp (-(b 1 + 6) 71) < v (j) (71) < C6 exp (-(b 1- 6)7) 

for j = 0, 1 and 7r > 0, where b = g'(), 6 c (0 bl) and C6 > 0 are constants. 
Since g(0) = 0 and g'(s) is bounded for s E (0, A), we have from (2.1) 

|V "(71)1 = Ig/(v*)Iv(71), where v* E (0,v) C (0,A), 
< C6 exp(-(bi - )71) for ?7 > 0, 

where we recall that C6 is a generic constant. The result then follows from differ- 
entiating (2.1) repeatedly and induction on j, since the derivatives of g(s) up to 
any prescribed order are bounded for s E (0, A). El 

Lemma 2.2. Let A and g(s) be as in Lemma 2.1. Let v(r) be the strictly decreasing 
solution of (2.1) and (2.2). Let a(r) belong to the class e(bi, J) with bi = gj, 
and let Al be a given constant. Then there exists a unique solution vl (7r) of 

v (r1) - g'(v(r1))vi (r) = a(r) for 71 > 0, 

vi (0) = A1, v1 (oo) = 0. 

Moreover, vl (71) belongs to the class e(bi, J). 

Proof. The result follows easily from an inspection of the proof of Lemma 2.2 in 
Fife [4]. El 

The next lemma is a modification of Lemma 3.1 of D'Annunzio [2]. 
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Lemma 2.3. Let A and g(s) be as in Lemma 2.1. Let p be a constant. Then there 
is a Po E (O,g'(O)) such that if IPI < PO, there exists a unique solution v(97, p) of 

(2.3) v~- g(v) = -pv for 77 > ?, 

(2.4) v(O,p) = A, v(oo,p) = 0. 

(Here and in what follows a dot denotes partial differentiation with respect to 97.) 
For each fixed p E (-po,po), the solution v(?I,p) is strictly decreasing in 71 and 

belongs to the class e(bl, J), where b = /(0) -p. 
The derivative 0(49, p) = '9v (r,, p) exists and satisfies 

(2.5) q-(g'(v)-p)q=-v for?7>0, 

(2.6) 0qO,p) = 0(oop) 0= 

and 

(2.7) 0(7r,P) > O for 97 > 0. 

Furthermore, there exist positive constants Ci and C2, independent of p, such 
that 

(2.8) 10(7,p)| < Clie-027 for (9p) E (0O.o) >x [-popo]. 

Proof. The argument is similar to that of Lemma 3.1 of D'Annunzio [2]. We give 

an outline of the proof for completeness. 
Let gp(s) = g(s) -ps. We can easily show that there exists a po E (O ,g'(0)) such 

that if IpI < pO, then gp(s) satisfies the conditions on g(s) in Lemma 2.1. Therefore, 
the problem (2.3) - (2.4) has a unique solution v(71, p). For each fixed p E (-po, po), 
the solution v(?7,p) is strictly decreasing in 91 and belongs to the class e(bi, J) with 

bi = / 

Also, from the proof of Lemma 2.1, we see that 

(2.9) C 1 exp(-(bi + 6)97) ? < (rip) ? CV exp(-(bi - 6)97), 

for j = 0, 1 and 71 > 0, where 6 E (0, b1) and CQ > 0 are constants. 
Moreover, we can show that v(71, p) is differentiable with respect to p and satisfies 

Op(v7,p) =0. Set 
rj(n A'=0 

0(7r,p) = ) (97,p) and (71,p) 
Ov 

(ASP 

Then 0(71, p) satisfies (2.5) and (2.6), while (71,,p) satisfies the homogeneous version 
of (2.5). Using the method of variation of parameters, we obtain 

(2.10) 0 (71,P A=-0(71,p A -2 (( p) [ [- v((, p) f(p) <<d. 

Now (2.7) follows from v(?7,p) > 0 and 0(71,p) > 0. Using (2.9) and (2.10), we 
conclude that (2.8) holds. El 

We now define the required boundary layer functions. These are more accurate 
than those of D'Annunzio. They will be used to construct our super and sub 
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solutions. Let 
f (vo (x/f,p) + Evo (x/E)) a(x) for 0 < x < 1/2, 

(2.11) w(x, Ep = < v1 ((1 - x)IEp) + EVl ((1- x)/E)) a( - x) 
Yt 0 ((1 -x)/~,p)?~v~ ((1 for 1/2 <x <1, 

where vo(ri,p), vl(rI,p), v?(71), and vl(rI) are respectively defined by 

(2.12) Vo - b (0, uo (O) + vo?) = -pvo for 71 > 0, 

(2.13) vo(0,p) =-uo(0), v?(oop) = 0, 

(2.14) itl- b (1, uo (l) + Vo) = -pvl for 71 > ?, 

(2.15) Vo (Op) =-uo(l), Vo (oo, p) = 0, 

(2.16) 
V1-bu (O. uo (0) + V0? (7, O)) Vo0 

=71 [bx (O. uo (0) + vo (TI, 0)) + bu (O. uo (0) + vo (TI, 0)) 80(O0)] for 71 > ?, 

(2.17) v?(O) = 0, vo (oo) = 0, 

and 
(2.18) 

i -bu (1, uo(1) + vo (71, 0)) vi 

=71 [bx (1, uo (1) + v o (71, I?)) + bu (1, Ilo (1) + v o (71, 0)) u/0 (1)] for 71 > ?, 

(2.19) v (O) = 0, v'(oo) = 0. 

We remark that D'Annunzio uses only the first terms of our expansions, i.e., vo1 
1V1 0 in [2]. 

Lemmas 2.1-2.3 imply that there exists po > 0, independent of a, such that 
w(x, A, p) is well defined for IpI < PO. The function w essentially models boundary 
layers at x = 0 and x = 1, as we shall see in the course of proving the next lemma. 

Lemma 2.4. Set pe = 62 In2 (1/E). Then we can choose positive constants Ci and 
C2, which are independent of A, such that when E is sufficiently small, w(x, A, Cip,) 
and w(x, e, -Cipe) are well defined, and 

(2.20) (x, E) = uo(x) + W(X, E, Clpe) + C2Pe 

and 

(2.21) ca(x, E) = uo(x) + w(x, E, -Cipe) - C2pe 

are super and sub solutions respectively of problem (B). 

Proof. Fix E E (0, 1]. We shall specify Ci and C2 later in the proof. It is easy to 
see from (2.7) that 

al(x, E) < O(x, E) for x E X. 

By the construction of w(x, sAp), we have 

a (0, E) = -C2pE < 0 < C2pE = (0, E), 

l(l, E) = -C2pe < 0 < C2pe = (1, E) 

To be a super solution, 3 must satisfy Fats > 0 for x E X. We shall prove this 
inequality only for x E [0, 1/2], since the argument for x c [1/2, 1] is similar. In the 
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rest of this proof, the notation ( = O(M) stands for I(I < CM, where C > 0 is any 
constant independent of C1, C2 and E. 

We set 

W (r E, p) = (v (rp) + eVlo (r)) )F (En) 

and 

&2 ji (r, E,p) ( 
( E It~1 Pap) + b(E, uo(E77) + )+' (j, E,p)) -pW(&, , p); 

these functions are defined for all sufficiently small 1pI Then from (2.12), 

(2.22) 1(rq, O.,p) 0. 

This yields 

(2.23) (r(, O. 0) = 

and 

(2.24) aP ( (71 0) 

Next, (2.16) implies that 

(2.25) i34 (q, E, p) 0. 

By Taylor's theorem and (2.23)-(2.25), we have 

(2.26) 1(riEp) = 2 (E- +P+)- 2 (Th7,EP),( A EoP) 

for 71 > 0 0 < E < 1 and 0 < p < po (po chosen so that w is well defined for 
III < po), and some 0 E (0,1). 

Lemmas 2.1-2.3 imply that 

(2.27) 0 < 0t"(' 
E P) < C 

and 

(2.28) &a~i9jep) < C exp (-(b - )r) 

for 7r > O and j=0, 1,... .J, where bo > p, b = -p (bo is given by (1.2)) and 
6 is any fixed number in (0, b). Hence there exists a constant C such that 

|2 4 ( r(, E, p) |C 

|s ( 
p2- I(,q'o,op)| 

for i = 0,1, 2, r1 > 0, 0 < E < l and 0 < p < po. Thus (2.26) implies that 

(2.29) hI(,E,p)I < C(E2 +p2) 

for 7 > 0 0 < s < 1 and 0 < p < po. 
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We are now ready to show that 3(x, E) is a super solution of problem (B). For, 
observing that w(xI, , p) = t(r, E, p) when rE = x/ , we have 

Fe 0(x,, ) = - 2 /,, (X, E) + b(x, ,) 

-E2U// (X) + (71m , iCPe) + C0ipet&(n, E, Cipe) 

+ b(x, uo(x) + t (71, , COipe) + C2pe) 

(2.*30) -b (x, uo (x) + t (71, E, Cipe)) 

- Clp0ipet(nE, Cipe) + C2pebu (x,o(x) ? W(rQipe) ? OC2Pe) 

+? 

(E2 + p 2), 
A 

by (2.29), for some 0 E (0,1). 
Now (1.4a) states that bu(x, uo(x)) > bo > 0, so by the compactness of X there 

exists a constant C3 > 0 such that 

b(xIuo(x) +g(x)) > b2/2 for x E X, 

for all functions g satisfying Ig(x)I < C3 on X. 
Choose C2 = C3/2, so that in (2.30) we get I002pej < C3/2. Set 

C4 = max{lbu(xuo(x) +?tb(,e,r) +s)0: 0 < x < 1, 71 > 0, 

O<E<1, 0< r<po, O<s<C3/2}; 

it follows from (2.27) and (2.28) that this maximum is well defined. Now (2.30) 
and Lemmas 2.1-2.3 imply that 

Pe (C2b4/2)-PEC/ IIv? II ?) + O(E2 +p2) if t>< C3/2, 
whereFe3(X,) (Cl--C4)C3pE2 + (E + P ?2) if t > C3/2, 

where KlvOIIlo = maxq>0 IvO(71) . Choose C0 = 2C4. Then for all sufficiently small 
E, we have 

Fe3(x, E) > 0 for x E [0 1/2]. 

Analogously, one may show that Fe/3(x, E) > 0 for x E [1/2, 1], and that Fea(x, E) < 
0 for x E X. El 

Theorem 2.1. Under the same hypotheses as in Lemma 2.4, problem (B) has a 
solution u(x), which is the only solution satisfying 

(2.31) ca(x, E) < u(x) < ,3(x, ) for x E X. 

Here, 3(x, E) and a(x, E) are the super and sub solutions given by (2.20) and (2.21). 

Proof. D'Annunzio [2, Corollary 3.1] proves the following extension of Nagumo's 
theorem: if problem (B) has a super solution 3(x, E) and a sub solution a(x, E), 
then there exists a solution u(x) of problem (B) such that 

a (X, E) < u(X) < f3(X, ) for x E X. 

Hence the existence of a solution is implied by Lemma 2.4 above. The uniqueness 
of the solution satisfying (2.31) can be shown by arguments similar to those of [2, 
Theorem 3.6], using degree theory. El 

Recall that x(x, E, p) = v(r/, E, p) when 97 = x/E. From (2.27) and the definitions 
of our super solution 43(x, E) and sub solution ac(x, E), we see that 

-(x, a-(x, E) I< Ce2 In2 ( 1/E) for x c X. 
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This shows that we have tighter control on the solution u(x) of Theorem 2.1 than 
in Corollary 3.4 in D'Annunzio [2], where the super and sub solutions yield only an 
0(E) estimate of u. 

In principle one could obtain an approximation to u by explicitly computing 
ca(x) or ,3(x). This would entail solving two nonlinear and two linear second-order 
differential equations (see (2.12) - (2.19)) and would be more complicated than 
using the difference scheme below to solve (1.1) directly. 

3. A CENTRAL DIFFERENCE SCHEME ON A SHISHKIN MESH 

We analyze the truncation error of a central difference scheme applied to problem 
(B) on a Shishkin mesh. 

For a given positive integer N, we denote by XN an arbitrary mesh 

0 = XO < X1 < < XN-1 < XN , 

with hi = xi-xi-,, for i = 1,... , N, and hi = (hi + hi+ )/2, for i = 1,... , N-1. 
We use gN+1 to denote the real (N + l)-dimensional linear space of all column 

vectors 

Z= (ZOz ,.. ,ZN) 

In what follows, for any function y E C(X), we shall abuse the notation by also 
writing y E IZN+1 with yi = y(xi) for i = 0, 1,... , N. 

We equip the space gN+1 with the usual 10-norm: 

jjzlloo = max Izi . 
0<i<N 

The induced norm of a linear mapping A = (aij) : IN+1 I ZN+1 is 

N 

IK4IIoo = O<<N Ea- 

Let 
/_-2 0 0 

r- reC r-+ 

A= 

rNl rNl r+l 
o o _E-2 

be an (N + 1) x (N + 1) tridiagonal matrix, where 

1 c 2 + 1 
hh= i hihi+l i hi+lhi 

Let B 7gN+l _ 7ZN+1 be the mapping: 

0 O for i = 0, 
(Bz)i = (xi, zi) for i= 1, ... , N-1, 

0 O for i = N. 

Set 

F -E2 A + B. 
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We shall use {F, XN} to denote the three-point central difference scheme 

(3.1) FuN = 0. 

Let y E C2(X). Define (F~y)(0) = y(O) and (F~y)(1) = y(l). The truncation 
error of F in approximating FE in terms of y is defined to be JjFy-Fyjj". It is clear 
that (Fy)o = (Fy)(O) and (Fy)N = (Fey) (1) . We shall bound I (Fy)i-(F~y) (xi)- 
for i =1, 2, ... , N - 1, in the truncation error analysis of this section. 

Since u'(x) is in general unbounded in the boundary layers at x = 0 and x = 1 
when E -+ 0, a polynomial-based discretization cannot be consistent, uniformly 
in E, unless it is constructed on a special mesh. In the literature, several types 
of special graded meshes have been introduced for singularly perturbed two-point 
boundary value problems; see Herceg [7], D'Annunzio [2] and Gartland [5]. In the 
present paper we shall use a Shishkin mesh [15], which is piecewise equidistant and 
consequently much simpler than the above meshes. 

Given a positive integer N, where N is divisible by 4, we divide the interval [0, 1] 
into the three subintervals 

[,O [a, 1-a], and [1-a, 1]. 

We use equidistant meshes on each of these subintervals, with 1 + N/4 points in 
each of [0, a] and [1 - a, 1], and 1 + N/2 points in [a, 1 - a]. Set b0 = min{bo, 1}. 
We define the parameter a by 

(3.2) a = min {1/4, 4b- 1elnN}N 

which depends on E and N. The basic idea here is to use a fine mesh to resolve 
part of the boundary layers. 

More explicitly, we define 

Xs :?=XTo < X1 < ... < Xio < ... < XN-io < ... < XN =1 

with io = N/4, xio a , XNio = 1 - a, and 

(3.3) hi= 4aN-1 for i = 1, .. ., iol N -io + 1, ... ., N, 

(3.4) hi = 2(1 - 2u)N-1 for i = io + 1, ... ., N -io. 

If a = 1/4, i.e., 1/4 < 4bO-elnN, then N1 is very small relative to E. This is 
unlikely in practice (and in this case the method can be analyzed using standard 
techniques). We therefore assume that 

(3.5) az = 4b-lelnN. 

From (3.3) and (3.4), it is clear that the interval lengths satisfy 

(3.6) hi = 16b-1eN-1 InN, 

fori=1,...,ioN-io+1,...,N,and 

(3.7) N-1 < hi < 2N-1, 

for i = io + 1,.. ., N-io. 

Lemma 3.1. Let y E C4(X). Suppose that y = Y + V, where 

(3.8) Y W (x) < C 
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and 

(3.9) V(M)(x) <CE- [exp (-box/2E) + exp (-bo(I-x)/26)] 

for x E X and j 0 ,. ... , 4. Then on the Shishkin mesh XN, the truncation error 
of the scheme (3.1) satisfies 

(3.10) (IFy - FyllII < C (E2N-1 + N-2 In2 N). 

Proof. Suppose first that xi is inside the fine mesh, i.e., that 

i E {1,... ,io-1}U{N-io +1,... ,N-1}. 

By a Taylor expansion, there exist (i E (xi,, xi) and r7i E (xi, xi+,) such that 

(Fy)i - (Fey)(Xi) 

i+1 2y //(xi) 2 y(4) (() +- 2(4) 

(3.11) 
- h 24hi 24hi 

3 62 (4)(i _ + h9l2y(4)(n) ____ - E 77) 

--24hi 24hi 

since the mesh is equidistant on [0, a] U [1 - a, 1]. It is then easy to see, from (3.6), 
(3.8) and (3.9), that 

(3.12) (Fy)i - (Fy) (xi) ? < CN-2 In2 N. 

Now suppose that xi is no longer inside the fine mesh, i.e., suppose that i E 
{io ... ,N-io}. From (3.9) we see that as E -* 0 with N fixed, E2Iy"''(x)I is 
unbounded for x E J-[u, u)U(1-u, 1-u], where oE = min{l/4, 4bo1 ln(1ft)}. 
Recall that the Shishkin mesh XN is coarse on J. Hence, (3.11) will not yield a 
bound for (Fy)i - (Fy)(xi)l that is uniform in E. 

We therefore use a Taylor expansion with integral remainder to control V. The 
truncation error of the scheme may be split in the form 

(3.13) (Fy)i - (Fey)(xi) = (Iy)i + (IV)i. 

Here (see (3.11)), 

______1 -2y"'(Xi)__ i 62Y(4)((i) - t1+ 2y(4)(n.) 
- 6hi 24hz 24hz 

where (i E (xi-,, xi) and Ti E (xi, xi+,) depend now on the function Y, and 

(3.14) 
2 fX% 2 X?'+1 

IV) i = 
6 

_X,_1)2V"'(s 
E 

XifX_8)2t1 = 2h h (s- l (s) ds- h - s)2V"-(s) ds. 

Then we easily get 
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by (3.7) and (3.8). As for (IV)i , (3.14) and (3.9) give 

|(IV)I <C-1 Ji1 (exp(-bos/2E) + exp(-bo(1 - s)/26)) ds 

rXN-io+l 

< CE-1 J (exp(-bos/26) + exp(-bo(l - s)/26)) ds 
Xi0-1 

(3.16) = ~F (exp(-boxio-1/2E) - exp(-boXN-io+1/2)) 

< Cexp(-boxio-1/26) 

= CN-2 exp(bohio/2E), since xio = a = 4EbU-1 InN, 

< CNW-2 

by (3.6). 
Thus, from (3.13) - (3.16), we obtain 

(Fy)i- (F6y)(xi)l < C (E2N-1 + N-2) for i E {io,... , N - io}. 

Combining this with (3.12) completes the proof. C] 

Under the reasonable assumption E < N-1, the estimate (3.10) becomes 

JIFy - Fyll < CN-2 In2 N. This is much better than the 0(h) result obtained 
by D'Annunzio [21 for the same scheme with a more complicated mesh, where h is 
the maximum mesh spacing. 

4. UNIFORM CONVERGENCE 

We use degree theory to investigate the existence and uniform convergence of 
solutions of the central difference scheme on the Shishkin mesh XSN for problem 
(B). We shall prove that the method is uniformly convergent of order N-2 In2 N 
on this piecewise equidistant mesh. 

For this purpose, we imbed problem (B) in the following family of problems: 

(4.1) F(it) -62i (x t) + b(xtii(xt)) = 0 for x E (0, 1), 

(4.2) ii(0, t) = ii(1, t) = 0, 

where t E [0, 1] is a parameter, 

(4.3) (x I t Ii 7(XI t)) = tb (XI a(XI t)) + (1 -t) (ii(XI t) - uo(x)) I 

for (x, t, i) E [0, 1] x [0, 1] x ]Zl, and u0 is the solution of (1.3). Note that for each 
x and t we have b(x, t, uo(x)) = 0. 

Recall b0 = min{bo, 1}. We have 

bu(x, t, u) = tb (x, u) + (1 -t) 

(4.4) = tb 2 + (1 -t) 

> bol 

for all (x, t, u) E [0, 1] x [0, 1] x RV . Hence, for each t, problem (4.1) - (4.2) is of 
the same type as problem (B). 

Define the mapping F(.,.): ]RN+1 X [0,11] _ RN+1 by 

F(z, t) =- -Az+ B(z, t)I 
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where B(-,-) RN+1 X [0, 1] >_ ]RN+1 is given by 

0 for i = 0, 
(4.5) (B(zt))I = (xitzi) for i = 1,... ,N-1, 

t 0 for i = N. 

Then the scheme (3.1) for problem (B) is imbedded in the family of schemes 

(4.6) F(z, t) = 0. 

Let us introduce some more notation and definitions. 
For z1 and z2 E ]RN+1, we denote by z1 < Z2 (or zI < Z2) the natural partial 

ordering on 1N+l, i.e., zi <9Z2 (orz1 <z?) fori=0,1,... ,N. 
Let M ]ZN+1 , ]ZN+1 be a mapping. Let ac, /3E RN+l. If 

Mca < 0, 

M3 > 0, 

and 

ae < 

then 3 and ae are said to be super and sub solutions of Mz = 0, respectively. 
Let a, 3 E RN+1 satisfy ae < 3. Let G be a mapping: ]RN+1 ZRN+1. Define 

Gm :]N+1 ,R 7N+1 by 

(GOB)i + (zi - Oi) if Zi > Oij 
(4.7) (Gmz)i = (Gz)i if ai < Zi < i/, 

(Gca)i + (>i - zi) if Zi < a, 

for i = 0, 1, ... , N. Then Gm is called a modification of G. 
We give a strengthening of Theorem 5.1 of D'Annunzio [2]. 

Lemma 4.1. Let D = (dij) be an (N + 1) x (N + 1) matrix satisfying 

(4.8) dij<O forO<i,j<N, i j, 

and 
N 

(4.9) Z dij>O forO<i<N. 
j=1 

Let G ]ZN+1 ,R 7N+1 be a mapping. Let ca, / E ]ZN+l satisfy ae < /. Let Gm be 
as in (4.7). Define M: ]ZN+l , 7RN+1 by 

M=D+CGm. 

If 

(4.10) Mz = 0, 

(4.11) Mc < 0 

and 

(4.12) M/ > 0, 

then 

ae < z < /. 
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Proof. We shall prove only that z < 3, since z > ae may be shown analogously. 
Set v = z - 3. We prove that v < 0. Suppose that v < 0 is false. Then for some 

i E {0, 1, ... , N}, we have vi > 0. Let k be an integer such that 

(4.13) Vk = max {vi}. 
0<i<N 

Clearly 

(4.14) Vk > 0. 

By (4.10), 

0 = (DZ)k + (GmZ)k 
= (DZ)k + (G!)k + (Zk- 

from (4.7) and (4.14). Hence, using (4.7) and (4.12), we get 

-Vk = (DZ)k + (G!)k 

= (Dz)k + (G 3)k 
> (DZ)k- (D3)k 

= (DV)k 
N 

- ZdkjVj 
j=O 

> V dkj Vk, by (4.8) and (4.13), 

> 0, 

by (4.9) and (4.14). That is, vk < 0. This contradicts (4.14) and the proof of 
Lemma 4.1 is completed. C] 

D'Annunzio [2] proved the same result under the extra conditions dii > 0 for 
i - 0, 1, ... , N, while assuming that strict inequality holds in (4.9) for at least one 
,. 

For each t E [0,1], set 

f (i0 (x/6, t, p) + E0 (x/6, t)) u(x) for 0 < x < 1/2, 
w6(x, t,1Ip) = 0( ((1 -x)/6,t,p) +t ((1-x)/6, t)) O(1 -x) 

for 1/2 <x <1, 

where 'bo (, t,p), t I (, t, p), tIl (, t), and il (, t) are respectively defined by 

Vo - (0, t, U0 (0) + bo?) = -pbo? for q > 0, 

5o8 (0, t, p) = -uo (0), io5 (oo, t,jp) = 0, 

Vo - 0 (1, t, uo(l) +l) =-pvot for q > 0, 

'b (O. t, p) =-a (1), vbO (oo, t, p) = 0, 
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v,-b (Ol t, lo (0) + Vo0 (7, 0)) V50 

= ni [& (0, t, UlO(0) + Vo I 0)) + bu (0, t, uo(0) + V 0)) uo(0) 

for q > 0, 
ii?(Ot) = O 50 (00, t) = O 

and 

v1bu ( 1, t, I 0 ( 1) + vb 0)1 O) vb 

= 1[x(1, t, U0 (1) + v5 (r,q O )) + bu (1,I t, uo (l) + v r1 )) u0 (l ) 

for q > 0, 
vl1(Olt) = O. 5 v(001 t) = O. 

Recall that b0 is independent of t in (4.4). One may show, by the arguments 
of ?2, that there is a po > 0, independent of E and t, such that w(x, t, E, p) is well 
defined for IpI < Po. Furthermore, we have 

(4.15) 0 < 0c (xt,6,p) < C 

and 

(4.16) a| (x t E p) < C6i (exp (-(b-&)x/6) + exp (-(b- )(1- 

for (x, t) E [0, 1] x [0, 1] and j = 0, 1, 2,3,4. Here, b > p andb= b with bo 
given by (4.4) and 6 any fixed number in (0, b). 

Note that problem (4.1) - (4.3) becomes (1.1) when t = 1. We have 

(4.17) w(x, 1, 6,p) = w(x, 6,p) for x E [0, 1]. 

Assumption 4.1. In what follows, we shall assume that E < N-1, which is non- 
restrictive in practice. 

Lemma 4.2. Set PN = N-2 In2 N. Let t z [0, 1]. Then we can choose positive 
constants C1 > 0 and C2 > 0, which are independent of N, E and t, and a posi- 
tive integer No, which depends on C1 and C2 but is independent of E and t, such 
that for each fixed t E [0, 1], when N > No, the functions ii(x, t,6, C1PN) and 
wV (x, t, 6, -C1PN) are well defined, and 

(4.18) 3 (x, t) = u0(x) + wi(x,t, 6, C1PN) + C2PN 

and 

(4.19) &N (x, t) = u0(x) + w(x, t, 6,-C1PN) - C2PN 

are super and sub solutions, respectively, of (4.6) on the Shishkin mesh X4. 

Proof. Let 
N (x, t) = uo (x) + wV (x, t,6, C13PN) + C2PN 

and 

&N (x, t) = u0(x) + wV (x, t, 6, -C1PN) - C2PN, 

where C1 > 0 and C2 > 0 will be chosen later. 
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For each t E [0, 1], it is clear that 

oN (. t) < )N(.1t). 

We now prove that F(ON, t) > 0. From the definitions of the terms involved, 

(4.20) P( I Nt)) = (P(N, t)) = C1PN > 0. 

Fix i E {1, 2, ... N-1} and t E [0, 1]. We have 

P(NI t)) = ( NF( t)) - IFvt)) (xil, E)) 

+ (F?( Nt)) (xi,jtE). 

We separately analyze these two terms. 
First, take N1 > 0 such that C1PN < bo/4 for N > N1. Then for N > N1 and 

= bo/4 in (4.16), we have 

| (x, t, E, C1PN) <? E (exp (-box/2E) + exp (-bo(1-x)/2E I 

for (x, t) E [0, 1] x [0, 1] and j = 0,... , 4. On the Shishkin mesh X4 one has, using 
Lemma 3.1 and E < N-1, 

(P(Fj, t)) - (PF(,N t)) (xit,E) < CPN, 

for some positive constant C that is independent of C1, C2, N, E and t. 
Next, we can easily adapt the proof of Lemma 2.4 to show that 

F'F(ON It) (X, It, ) > 2CPNi 

for sufficiently large C1 and C2. Hence, 

(P(iN, t)) >0 fori=1,... ,N-1. 

Combining this with (4.20) yields F(N, t) > 0. 
We can similarly show that F(&N, t) > 0, to complete the proof. El 

We now introduce a modified problem corresponding to (4.6). Consider 

Fm (z, t) = 0, 

where the mapping Fm'(.,) ]ZN+1 x [0,11] RN+1 is defined by 

Fm (z t) = -62Az + Bm (z, t) 

Here, Bm (.,t) is the modification of B(.,t), with 1N and &N given by (4.18) and 
(4.19), respectively, for each t; see (4.7). 

Define an open and bounded set Dt C ]ZN+l for each t E [0,1] by 

Dt= {Z E ZRN+1: &N(.,t) <z <!3N(.t)} 

We shall denote by Dt and aDt the closure and the boundary, respectively, of Dt 
in -RN+1. 
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Define the mapping T(.,-) D1 x [0,11 > 7tN+1 by 

(T(z, t))= (Z _ &N (x, 1)) N ( x ,1) INt ) 

+ (i~Nx~, 1) (X) cy- N (Xi, t 
+1 

N(x, 1) - &N(Xi, 1)' 

for i = 0, 1,... , N. It is easy to see that, for each t E [0, 1], T(., t) is a linear 
transformation from D1 onto Dt. 

We finally define a mapping H(.,-): D1 x [0,11] , 1ZN+l by 

H(z, t) = Fm(T(z, t), t) for (z, t) E D1 x [0, 1]. 
This is a continuously differentiable mapping and satisfies 

(4.21) H(z, 1) = Fm(z, 1) = F(z, 1) = Fz, 
for z E D1. We shall prove that 

Deg(H(., 1), DI, 0) = 1, 

where Deg denotes topological degree (see, e.g., Ortega and Rheinboldt [13]), by 
using the Homotopy Invariance Theorem [13, Theorem 6.2.2]. 

We first show the following: 

Lemma 4.3. There holds 

H(z, t) $& 0 for all (z, t) E aD1 x [0, 1]. 

Proof. Suppose that H(z*, t*) = 0 for some (z*, t*) E D1 x [0, 1]. Set T* = T(z*, t*). 
Then T* E Dt* satisfies 

(4.22) Fmr(T* t*) = 0. 

From the definition of Fm(,.) and Lemma 4.2, we have 

(4.23) Fm(&N( t*) t*) = F(&N( ,t*),t*) < 0, 

(4.24) Fm(!N(., t*), t*) = F(!N(.,t*),t*) > 0. 

If we set D = -62A, the conditions (4.8) and (4.9) are satisfied. Combining (4.22) 
- (4.24) with Lemma 4.1 yields 

&N(., t*) < T* < /N( ,t*). 

From the definition of T(., .), we obtain 

* = ( _*- &N (Xt*)) (iN 
) 1 )X t + (* (xi t )-T ) /N(x, t*) - &N(X, t*) 

+ ()N(X~,t*)_-T*) 
&N 

(X,) 3N (X~,It*) - NXt 

for i = 0,1, ... ,N. Hence, 

&lN(.1 1) < z* < )N(.1 1), 

i.e., z* , aD1, which is the desired result. El 

Now we have 
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Lemma 4.4. If C1 and 02 in (4.18) and (4.19) are chosen sufficiently large, then 

Deg(H(*, 0), DI, 0) = 1. 

Proof. We start with the problem 

(4.25) F(z,0) = 0 for z ERN+l. 

Set 

o 0 0 
0 1 0 

0 1 0 

Then (4.25) can be written in the form 

(-2A + S)z - Suo = 0, 

from (4.3) and (4.5). The matrix -E 2A + S is an M-matrix and thus has a positive 
inverse. Consequently, (4.25) has a unique solution 

Z =- (2A + S)-'Suo E RN+I. 

We wish to prove that z* Ez Do.- We have 

_2A + S) )N (-, 0)Z*) =F(N (, 0)j,0)_P(z*j, ) 

= P(pN(.1 O)j O) 

> 01 

by (4.25) and (4.24). Hence, 

(- (-A+S) > Z . 

Similarly, 
(- (- +) < Z + 

That is, Z z Do. 
We now consider the problem 

(4(26) + (zN, 0) = = for z E (N. 

As T(z, 0) E Do, the problem (4.26) is equivalent to 0(T(z,), ),0) ). But from 

above, (4.25) has a unique solution z* E Do. Consequently, we need look only for 
solutions z E DI of 

(4.27) T(z, =) = z*. 

Recalling that T(., 0) is a linear mapping from D1 onto Do, so ODo = T(&D1, 0), 
we conclude that (4.27) has a unique solution i E D1. That is, (4.26) has a unique 
solution, which lies in D1. 
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Furthermore, we have for z E Di, 

OH OFm OT - (z, 0) = OT (T(z, 0), 0) - (z, 0) 
_z of OT 

= (T(z, 0), Oz) 
O 

(z, 0) 
- OT 

= (E2A+ S) a (Z O). 

From above, we know that 

det(-E2A + S) $ 0. 

Since dlN(., 0) < 0N(,0), we have 

det (T (z, 0)) $0 forallzElRN+l. 

Therefore, 

det 
OH 

(z, 0) $0 for all z E D1. Oz J 

We have shown that (4.26) has a unique solution z*, which lies in D1, with 

det ( | ) $ 0. This completes the proof. El 

Theorem 4.1. Let u(x) be the solution of problem (B) guaranteed by Theorem 2.1. 
Assume that E < N-1. For N sufficiently large, independently of E, the scheme 
{F, XSNA} has a solution UN such that 

11U-U N11 < CN-2 In2 N. 

Proof. Let af and 3 be given by (2.19) and (2.20). Then 

(4.28) a _ 

by Theorem 2.1. 
On the other hand, from Lemma 4.3, 

Deg(H(., t), D1, 0) is constant for t E [0, 1], 

by the Homotopy Invariance Theorem [13, Theorem 6.2.2]. Hence, 

Deg(H(, 1), D1, 0) = Deg(H(, 0), D1, 0) = 1, 

by Lemma 4.4. This implies that the equation 

H(z, 1) = 0 

has at least one solution uN E D1. Recall (4.21). We see that {FXsN} has a 
solution that satisfies 

(4.29) &N(. 1) < UN < )N(.1 1). 

Choose C1 and 02 in Lemma 4.2 sufficiently large such that C1 > CI and 
02 > C2, where CI and C2 are given in Lemma 2.4. Then C1ps < C1PN and 
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C2Pe <? C2PN, since E < N-1. Hence, for i = 0, 1,.. ., N, 

3(Xi, E) = UO(Xi) + w(xi, E, CIpe) + C2P1) 

= UO(Xi) + zi3(Xi, 1, E, CIpe) + C2Pe 

< uo(Xi) + zC3(Xi, 1, E, C1PN) + C2PN 
- )N(Xi, 1), 

by (4.17) and (4.15). Similarly, for i = 0, 1, ... , N, 

ON (Xi, 1) < a (xi, E)- 

That is, 

(4.30) &N(. 1) < a< ?< N(., 1). 

We have 

(4.31) N(xOj 1) - &N(Xo, 1) = N(XNN 1) -&N (XN, 1) 

= 2C2N-2 In2 N 

and, for i = 1,... , N-1, 

|N(Xi, 1) - &N(Xi, 1) 

(4.32) < 2C1N 21n2 N |w (xi,ep*) +202N-2 In2N. 

where p* E (-C1PN, C1PN), 

< CN-2 In2N 

by (2.27) and the relation w (x,I , p) = tb (x/6, E, p) . 

Therefore, from (4.28) and (4.29) - (4.32), 

-1U_ N10 < II)N(. 1) - &N(., 1)1l < CN 2 In2 N 

which is the desired result. El 

Theorem 4.1 achieves uniform accuracy that is almost one order higher than that 
of D'Annunzio [2], who uses a more complicated locally quasi-equidistant mesh. 

5. NUMERICAL RESULTS 

In this section we present numerical results to confirm the uniform accuracy of 
the scheme {F, XN}. 

The nonlinear system of equations is solved using Newton's method with the 
initial guess uNO = (0, u0(X1),... , UO(XN- 1), o)T. Here, uO is a stable reduced 
solution with stable boundary layers. We iteratively compute uNk, for k = 1, 2, .... 
as successive approximations to uN. The stopping criterion used is 

maxj{jFu Nak11,01 HU Nk _ UNk-111 } < O.N-2. 

For each N and E in the tables, it takes only about five iterations to satisfy this 
criterion. 

The exact solutions of our test problems are unknown. We use a double-mesh 
method [3] to compute the experimental rates of convergence. In order to do this, 
we shall in addition to computing uN also compute another approximate solution 
UiN that we now describe. 
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Let UN E ]ZN?1 be a solution of {F,Xs}, where XA is a Shishkin mesh with 
the mesh parameter a of (3.2) altered slightly to 

3. = min{l/4,4b-16ln(N/2)}. 

Then for i = 0, 1, ... , N, the ith point of the mesh XSN coincides with the (2i)th 
point of the mesh XN. 

By inspecting the arguments of ??3 and 4, one may see that when E < N-1, 

118- if10 < C(N-1 In N)2, 

where C is independent of N and 6. Hence, for i = 0, 1, ... , N, 

(U N),_ (j2N)2iN < C(N-1 In N)2. 

For each N and 6, we shall report 

Et= max i - u )2i| 
0<i<N 

in the error tables below. 
Assuming convergence of order (N-1 ln N)' for some r, we estimate the classical 

convergence rate r from 

RN n EN, - In E.N 

lnE (2lnEN) 

The last row of each rate table is the uniform convergence rate, 

RE'ln EN n E2N 

In (k2) 

where EN - maximE. 

Example. Consider the following problem of Herceg [71: 
(5.la) -2u"/+ (u12+u1-0.75) (u12+u1-3.75) =0O for xE (0,1), 

(Si1b) u(0) = u(l) = 0. 

We have 

b(x,a) = (2u+ 1)(2u2+2u-4.5). 

The reduced problem 

b(x,u ) = 0 

has four solutions b = -2.5, u2 = -1.5, 1u3 = 0.5 and U4 = 1.5. It is easy to see 
that 

bu(x, ul) =-12, bu(x, U2) = 6, bu(x, U3) =-6 and bu(x, U4) = 12. 

Hence, ul and U3 are not stable reduced solutions of (5.1). A calculation shows 
that U2 and U4 satisfy the conditions (1.4). Thus (5.1) is a problem of type (B) 
with two stable reduced solutions U2 and U4. Each of U2 and U4 is "close" (in the 
sense of Theorem 2.1) to a solution of (5.1) when E is sufficiently small. We apply 
the scheme {F, XsN} to compute these solutions of (5.1). 
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TABLE 5.1. Errors for solution near U2 

N=64 128 256 512 1024 
2.500000e-01 3.4316e-04 8.6686e-05 2.1679e-05 5.4227e-06 1.3557e-06 
6.250000e-02 3.5179e-03 1.1715e-03 3.4384e-04 8.6876e-05 2.1726e-05 
1.562500e-02 3.5180e-03 1.1715e-03 3.7359e-04 1.1596e-04 3.5084e-05 
3.906250e-03 3.5180e-03 1.1715e-03 3.7359e-04 1.1596e-04 3.5084e-05 
9.765625e-04 3.5179e-03 1.1715e-03 3.7359e-04 1.1596e-04 3.5084e-05 
2.441406e-04 3.5179e-03 1.1715e-03 3.7359e-04 1.1596e-04 3.5084e-05 
6.103516e-05 3.5179e-03 1.1715e-03 3.7359e-04 1.1596e-04 3.5084e-05 
1.525879e-05 3.5179e-03 1.1715e-03 3.7359e-04 1.1596e-04 3.5084e-05 
3.814697e-06 3.5179e-03 1.1715e-03 3.7359e-04 1.1596e-04 3.5084e-05 
9.536743e-07 3.5179e-03 1.1715e-03 3.7359e-04 1.1596e-04 3.5084e-05 

TABLE 5.2. Convergence rates for solution near U2 

6 N=64 128 256 512 
2.500000e-01 2.55 2.48 2.41 2.36 
6.250000e-02 2.04 2.19 2.39 2.36 
1.562500e-02 2.04 2.04 2.03 2.03 
3.906250e-03 2.04 2.04 2.03 2.03 
9.765625e-04 2.04 2.04 2.03 2.03 
2.441406e-04 2.04 2.04 2.03 2.03 
6.103516e-05 2.04 2.04 2.03 2.03 
1.525879e-05 2.04 2.04 2.03 2.03 
3.814697e-06 2.04 2.04 2.03 2.03 
9.536743e-07 2.04 2.04 2.03 2.03 

RN 2.04 2.04 2.03 2.03 

TABLE 5.3. Errors for solution near U4 

N=64 128 256 512 1024 
2.500000e-01 1.1820e-03 2.9456e-04 7.3582e-05 1.8397e-05 4.5991e-06 
6.250000e-02 5.5968e-03 1.8000e-03 5.6725e-04 1.7490e-04 5.2884e-05 
1.562500e-02 5.6164e-03 1.8021e-03 5.6737e-04 1.7490e-04 5.2884e-05 
3.906250e-03 5.6057e-03 1.8022e-03 5.6760e-04 1.7493e-04 5.2885e-05 
9.765625e-04 5.5976e-03 1.8008e-03 5.6743e-04 1.7493e-04 5.2888e-05 
2.441406e-04 5.5951e-03 1.8002e-03 5.6731e-04 1.7491e-04 5.2886e-05 
6.103516e-05 5.5944e-03 1.8000e-03 5.6727e-04 1.7490e-04 5.2884e-05 
1.525879e-05 5.5943e-03 1.8000e-03 5.6726e-04 1.7490e-04 5.2884e-05 
3.814697e-06 5.5942e-03 1.8000e-03 5.6726e-04 1.7490e-04 5.2884e-05 
9.536743e-07 5.5942e-03 1.8000e-03 5.6726e-04 1.7490e-04 5.2884e-05 

The numerical results for the example show that the scheme is capable of com- 
puting those solutions of problem (B) that lie close to particular reduced solutions. 
Furthermore, the scheme achieves second-order accuracy for this difficult problem, 
confirming our theoretical results. 
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TABLE 5.4. Convergence rates for solution near U4 

E N=64 128 256 512 
2.500000e-01 2.58 2.48 2.41 2.36 
6.250000e-02 2.10 2.06 2.04 2.03 
1.562500e-02 2.11 2.07 2.05 2.04 
3.906250e-03 2.11 2.06 2.05 2.04 
9.765625e-04 2.10 2.06 2.05 2.04 
2.441406e-04 2.10 2.06 2.04 2.03 
6.103516e-05 2.10 2.06 2.04 2.03 
1.525879e-05 2.10 2.06 2.04 2.03 
3.814697e-06 2.10 2.06 2.04 2.03 
9.536743e-07 2.10 2.06 2.04 2.03 

RN 2.10 2.06 2.04 2.03 
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0 0.2 0.4 0.6 0.8 1 

v the computed solution u12 
- Piecewise linear interpolant of the computer solution u256 

6 = 1.5625e-02 

FIGURE 1 

In Figure 1 we display the computed solutions of (5.1) that lie near u2 and U4 

when E=1.5625e-02, with N=12 (discrete points marked by triangles) and N=256 
(continuous piecewise linear interpolant to the computed solution). The proximity 
of the solutions for N=12 and N=256 demonstrates the accuracy of the method 
when only a small number of points is used. 

Figure 2 shows the behavior of the same problem inside the layer region 0 < x < 
0.04. It compares the solution for N = 24 (discrete points marked by triangles) with 
the continuous piecewise linear interpolant to the computed solution for N = 256. 
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Enlargement of computer solutions near x = 0; 
A is u24 and the continuous curve is 

the piecewise linear interpolant of u256 

FIGURE 2 

Clearly, the method tracks the layer accurately even when using relatively few 
points. 
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